極座標

微積分

【微積分】多重積分③~積分変数の変数変換~

これまで にて多重積分は下記4つのパターン 1. 積分領域が定数のみで決まり、被積分関数が変数分離できる場合 2. 積分領域が定数のみで決まり、被積分関数が変数分離できない場合 3. 積分領域が変数に依存し、変数変換する必要がない場合 4....
微積分

【微積分】ラプラシアンの極座標表示

下記記事にて、直交座標系から極座標系への座標変換した際のヤコビ行列を導出し、座標変換後の偏微分の表式を求めた。  今回はその結果を利用して、ラプラシアンの極座標表示を導出する。  かなり骨が折れる計算量になるが、詳細計算も示すので不明な場合...
微積分

【微積分】ヤコビ行列とヤコビアン②~直交座標系から極座標系・円筒座標系への変換~

前回 にてヤコビ行列とヤコビアンを紹介し、例題を解いてみた。  本記事では、直交座標系から極座標系および円筒座標系への座標変換する際のヤコビ行列とヤコビアンを求める。  この座標変換は多くの場面で用いられるため、抑えておくと後々楽になる。 ...